

Blockchain et sécurité : applications à la banque et l'assurance GS Days – 28 mars 2017

RENAUD LIFCHITZ renaud.lifchitz@digitalsecurity.fr

digital security econocom

INTERVENANT

Renaud Lifchitz, IoT security expert, DIGITAL SECURITY

renaud.lifchitz@digitalsecurity.fr

Quelques activités de Digital Security

CONSEIL

Définition

En amont des projets :

- Stratégie, schéma directeur
- Cartographie des risques et plan de traitement
- Etudes prospectives et de cadrage
- Recherche d' opportunités

Construction & mise en œuvre

Ingénierie sécurité :

- Politique & système de management (processus sécurité)
- Conduite du changement (formation, communication, sensibilisation)
- Intégration de la sécurité dans les projets
- Tests et recette des solutions

AUDIT

Evaluation

Au cœur des vérifications

- Tests d' intrusion
- Audits d' architecture
- Audits de conformité
- Audits de maturité
- Audit de code
- Audit de configuration
- Exercices en mode red team
- Préparation aux certifications
- Laboratoire de test et d'essai IoT

CERT

Maintien en condition de sécurité

Accompagnement opérationnel

- Réponse à incidents / Aide à la réaction (traitement des alertes, analyse forensic & postincident)
- Contrôle continu
- Aide à la détection (veille, surveillance)

ISO 27001 Lead Auditor, ISO 27005 Risk Manager, ISO 22301 Lead Implementor, ITIL, CMMI

Qualifié PASSI

Introduction

Blockchain

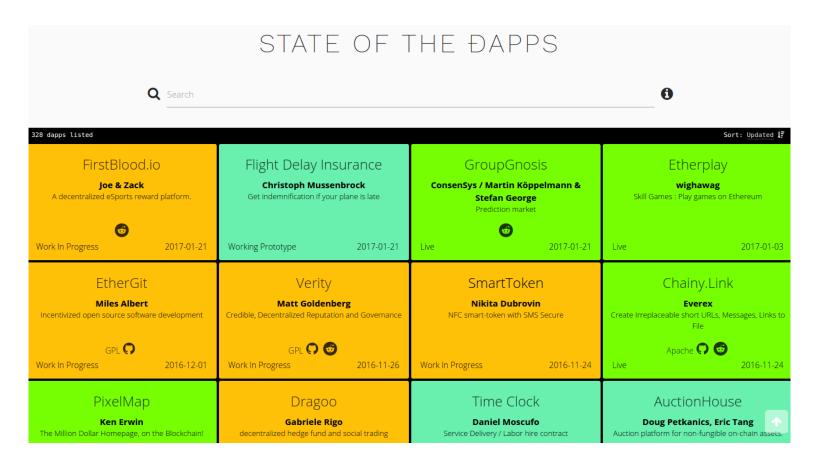
Registre global distribué
 (aucun point unique de défaillance)

- · Transmission d'informations authentifiée, fiable et sûre
- Multiples usages
- Multiples intérêts
- Entièrement personnalisable selon le contexte métier

Blockchain

Intérêts

- Scalabilité : facilité pour déployer des nœuds
- Résilience: résistance aux attaques de tout type (réseau, applicatives, dénis de service, ...)
- Intégrité et authenticité des données : données authentifiées et immuables
- <u>Décentralisation</u>: pas de point de défaillance unique, plus besoin de tiers de confiance
- Rapidité des transactions par rapport aux réseaux interbancaires (ex.: SWIFT)


Réseau de confiance

Smarts contracts

- Exécution automatisée, décentralisée, conditionnelle et sûre d'engagements (contrats) programmés à l'avance
- Contrats non modifiables une fois déployés sur la blockchain
- Exécution infalsifiable
- Grande variété de contrats modélisables
- Une partie, deux parties, ou contrats multipartites
- dApp : application web décentralisée se connectant à un ou des contrats sur une blockchain

Smarts contracts

« State of the dApps », un annuaire public de dApps Ethereum :

http://dapps.ethercasts.com/

Oracles

 Programmes jouant le rôle de passerelles entre une blockchain et le monde physique ou plus généralement le web

 Les conditions d'exécution d'un contrat dépendent très souvent d'indicateurs externes : météo, cours de bourse, actualités, résultat d'un match de sport, solde sur un compte...

 Un oracle se présente le plus souvent sous forme d'une fonction appelable depuis un smart contract

Une blockchain prometteuse: Ethereum

Première version : 30 juillet 2015

- 15 secondes par bloc
- Des smart contracts très puissants (« Turing-complets »), contrairement à Bitcoin
- Un système d'oracle mâture et bien intégré : http://www.oraclize.it/,
 apportant une preuve d'honnêteté (« TLSNotary »)
- Un bon support de la communauté et de quelques professionnels
- Une documentation riche
- Une majorité d'exemples et de démonstrations seront réalisés avec Ethereum lors de cette présentation
- Langage de développement des smart contracts : Solidity (variante typée de Javascript)

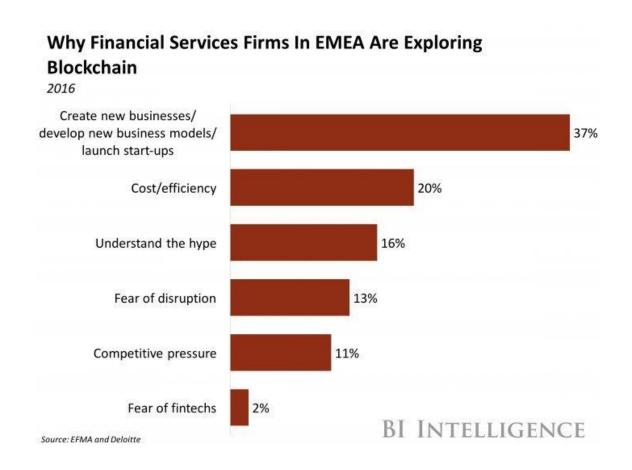
Cas d'usages

Pourquoi une blockchain?

Ou pourquoi ne pas en abuser...

- De nombreux cas d'usage ne justifient pas l'usage d'une blockchain :
 - Transactions très limitées en taille et en nombre (Bitcoin est limité à 3-7 transactions par seconde, Ethereum à 7-15)
 - Système coûteux énergétiquement parlant (par rapport à une redondance informatique classique)

- Plusieurs facteurs favorisent et légitiment par contre l'adoption d'une blockchain :
 - Absence de confiance à priori entre participants
 - Ecriture par des acteurs indépendants
 - Bénéfices pour les participants
 - Désintermédiation


Cas d'usages généraux

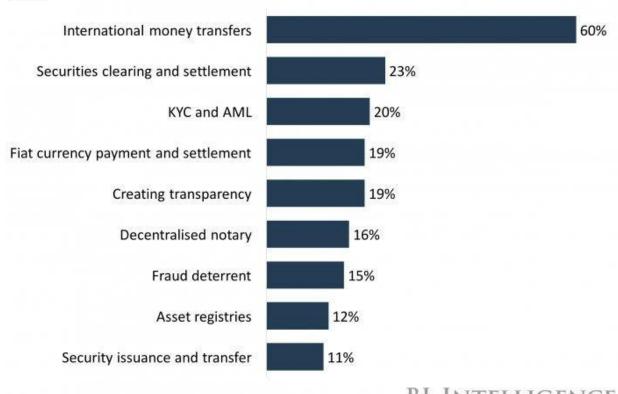
- Banque
- Assurance
- Notariat
- Vote électronique
- Conservation de la preuve
- · Collecte/Levée de fonds
- Exécution conditionnelle de transactions (contrats électroniques)

Cas d'usages généraux

Intérêts des services financiers EMEA dans la blockchain

Cas d'usages généraux

Démonstration



Notariat / Ancrage de données / Preuve d'antériorité sur la blockchain Bitcoin : https://woleet.io/

Cas d'usages

Top Bank Initial Use Cases For Blockchain 2015

Source: EFMA and Deloitte, n=3,000

BI INTELLIGENCE

Elles ont franchi le pas blockchain...

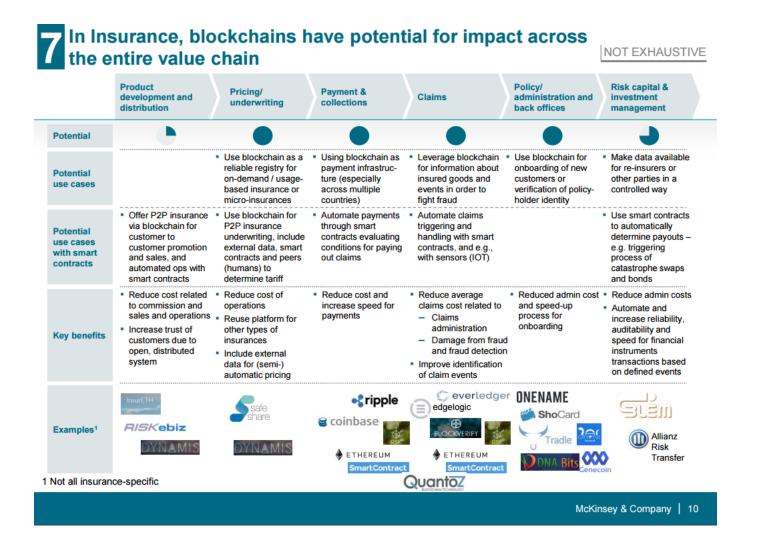
Cas d'usages & exemples

6 McKinsey has identified 7 genuine use cases and associated pain points; all of those sized could generate ~\$80B to 110B in impact

		Value generated	by		Examples of		Application by type of bank		Impact levers		
		blockchain (\$B)		Blockchain benefits	impacted players	Drivers of cost today	CIB	Retail	Cost	Revenues	Capit
24	Identified >60 viable use cases from a database of >200 fintech startups, press clippings, and research	Trade finance	14 – 17	Lower cost and operational risk, faster turn-around, increase in revenues	WAL*MART HSBC (**)	Paper-based and labor heavy structure Error-prone processes Capital that is locked up in the TF processes	✓	✓	✓	✓	√
		Cross- B border B2B payments	50 - 60	Lower cost and fees Increased security and speed	HSBC 🗭 citibank JPMorganchase 🐧	High fees and slow processing due to intermediaries High operational costs	√	√	✓	√	×
	Focused on 24 financial services applications	Cross- border P2P payments	3-5	Lower cost and fees from competition, increased security and transparency	ABRA WESTERNII Bankof America	Paper-based High fees due to lack of intermediary competition Capturing incorrect receiver information	x	√	√	√	×
		Repurchase agreement transactions (repos)	2-5	More effective netting Lower systematic risk Reduced operational costs	BLACKROCK Bank of America Merrill Lynch	Inability to net the obligations Counter-party risk Credit sensitive repo buyers	√	×	√	x	√
	Selected 7 use cases for analysis, based on initial hypothesis of potential for disruption and size of impact	OTC Derivatives	4-7	Reduced operational costs and capital due to streamlined processing and settling	JPMorganChase () Goldman Sachs DTCC	Manual and duplicative data entry and verification processes High capital requirements	✓	×	✓	×	√
		KYC / AML manage- ment	4-8	Reduced duplicative efforts in on-boarding customers Improved transaction monitoring	JPMorganChase O Capital Tr Bank of America	Manual and duplicative data entry and verification processes Low visibility into transactions	√	√	√	×	×
		G Identity fraud	7-9	Secure storage of ID credentials More secure account opening, transaction authentication		Direct losses due to fra- udulent activity (90-95%) Fraud prevention infrastructure and processes (5-10%)	√	√	√	x	×

Un standard pour l'émission de jetons sur la blockchain ?

- <u>Jeton</u>: unité de valeur dont on souhaite contrôler l'émission, l'utilisation et/ou les contreparties
- Standard ERP20 sur Ethereum
 (https://github.com/ethereum/EIPs/issues/20)
- Utilisation :
 - Monnaie électronique
 - Points de fidélité (enseignes commerciales)
 - Bons d'achat / bons de réduction
 - Preuves

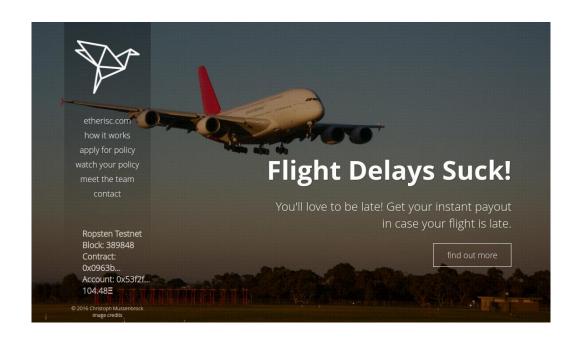


Cas d'usage

- Automatisation du paiement des primes à échéance
- Assurances indicielles ou paramétriques : estimations actualisées des risques par oracle
- Garantie d'unicité de déclaration de sinistre
- Acquittement de sinistre par oracle
- Rationalisation du paiement des indemnisations

Cas d'usage

Exemples


Assurance couvrant les retards d'avion :
 « Flight Delays Suck! » : https://fdd.etherisc.com/

- Assurance couvrant les cultures contre les risques de sécheresse ou d'inondation :
 - « Jamii Crop Insurance » : https://crop.etherisc.com/
- Sécurité sociale décentralisée (en test) :
 « Etherisc Social Insurance » https://govhack.etherisc.com/
- Mise en oeuvre de swaps de risque de catastrophe naturelle, négociation facilitée des obligations catastrophe (Allianz Risk Transfer AG & Nephila Capital Limited)
- Développement de sidechains pour l'interopérabilité entre blockchains et le traitement de transactions massives (Axa Strategic Ventures & Blockstream)

Démonstration

Assurance couvrant les retards d'avion :

« Flight Delays Suck! » : https://fdd.etherisc.com/

Sécurité

L'affaire « The DAO » (1/2)

 The DAO est un smart contract de levée de fonds (Organisation Décentralisée Autonome) développé par Slock.it (serrure connectée à la blockchain)

 Equivalent de plus de 150 millions d'euros collectés pour un projet initial qui ne nécessitait que quelques centaines de milliers d'euros (15% de la masse monétaire émise)

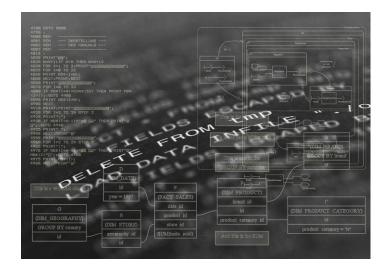
L'affaire « The DAO » (2/2)

- 17 juin 2016 : détournement du tiers par exploitation d'une vulnérabilité d'implémentation (appels récursifs) dans le contrat
- « Hard Fork » pour liquider le contrat et récupérer les fonds, puis naissance d'ETC : quid de la gouvernance ?
- Analyse juridique de la contractualisation avec un smart contract via la société suisse DAO.LINK : https://www.ethereum-france.com/dao-link-permet-a-des-entreprises-de-contracter-avec-des-dao/

Impacts du choix de la technologie

La blockchain

- · Critères importants :
 - Maturité
 - Sécurité
 - Possibilité d'interopératibilité (oracles et sidechains)
 - Support
 - Puissance des smart contracts
 - Montée en charge (taille des transactions et délai entre les blocs)



Quelques blockchains:
 Bitcoin, Ethereum, Zcash, Ripple,
 Lisk, Tezos, Iota, (Byteball) ...

Impacts du choix de la technologie

Le langage de développement des smart contracts

- Langages impératifs :
 - Courants en développement
 - Plus simples à écrire
 - Plus complexes à vérifier par preuve formelle (effets de bord)

- · Langages fonctionnels:
 - Peu communs
 - Complexes à écrire
 - Plus faciles à vérifier (pas d'effets de bord)

Bonnes pratiques de sécurité

Bonnes pratiques fonctionnelles

- · Simplicité, modularité et réutilisabilité du code
- Ecriture de tests unitaires et de tests d'intégration
- Incitations économiques diverses :
 - Limites de montants traités
 - Bug bounties (ex.: https://bountyfactory.io)
 - Marchés de prédiction (ex. : <u>https://gnosis.pm/</u>, <u>https://augur.net/</u>)
- Séparation des conditions et des actions dans le code (« Condition-Oriented programming »)

Bonnes pratiques de sécurité

Bonnes pratiques techniques

- Implémentation d'un « killswitch » dans les contrats
- Pré et post-conditions sur les fonctions
- Preuves formelles : plus faciles avec les langages fonctionnels (mais incitations économiques non prises en compte)
- Utilisation de « mocks » pour les tests
- Utilisation d'environnements de test (frameworks, testnets...)

Nos prestations de service blockchain orientées sécurité

Nos savoir-faire blockchain / sécurité

- Accompagnement à la conception et mise en œuvre de solutions blockchain
- Evaluation des risques techniques et juridiques
- Formation aux technologies blockchain
- Développement de preuves de concept
- Audit de primitives cryptographiques
- Développement de smart contracts
- Maîtrise des technologies Bitcoin, Ripple et Ethereum

Digital Security participe à la rédaction d'une étude sur la blockchain pour un ministère

Questions?/Contact

Renaud LIFCHITZ Consultant Sécurité Senior

renaud.lifchitz@digitalsecurity.fr

info@digitalsecurity.fr